Orthogonal Forward Selection for Constructing the Radial Basis Function Network with Tunable Nodes
نویسندگان
چکیده
An orthogonal forward selection (OFS) algorithm based on the leaveone-out (LOO) criterion is proposed for the construction of radial basis function (RBF) networks with tunable nodes. This OFS-LOO algorithm is computationally efficient and is capable of identifying parsimonious RBF networks that generalise well. Moreover, the proposed algorithm is fully automatic and the user does not need to specify a termination criterion for the construction process.
منابع مشابه
Non-linear system identification using particle swarm optimisation tuned radial basis function models
A novel particle swarm optimisation (PSO) tuned radial basis function (RBF) network model is proposed for identification of non-linear systems. At each stage of orthogonal forward regression (OFR) model construction process, PSO is adopted to tune one RBF unit’s centre vector and diagonal covariance matrix by minimising the leave-one-out (LOO) mean square error (MSE). This PSO aided OFR automat...
متن کاملConstruction of RBF Classifiers with Tunable Units Using Orthogonal Forward Selection Based on Leave-one-out Misclassification Rate [IJCNN1219]
An orthogonal forward selection (OFS) algorithm based on leave-one-out (LOO) misclassification rate is proposed for the construction of radial basis function (RBF) classifiers with tunable units. Each stage of the construction process determines a RBF unit, namely its centre vector and diagonal covariance matrix as well as weight, by minimising the LOO statistics. This OFS-LOO algorithm is comp...
متن کاملConstruction of Radial Basis Function Networks with Diversified Topologies
In this review we bring together some of our recent work from the angle of the diversified RBF topologies, including three different topologies; (i) the RBF network with tunable nodes; (ii) the Box-Cox output transformation based RBF network (Box-Cox RBF); and (iii) the RBF network with boundary value constraints (BVC-RBF). We show that the modified topologies have some advantages over the conv...
متن کاملFully complex-valued radial basis function networks: Orthogonal least squares regression and classification
We consider a fully complex-valued radial basis function (RBF) network for regression and classification applications. For regression problems, the locally regularised orthogonal least squares (LROLS) algorithm aided with the D-optimality experimental design, originally derived for constructing parsimonious real-valued RBF models, is extended to the fully complex-valued RBF (CVRBF) network. Lik...
متن کاملOrthogonal-Least-Squares Forward Selection for
The objective of modelling from data is not that the model simply fits the training data well. Rather, the goodness of a model is characterized by its generalization capability, interpretability and ease for knowledge extraction. All these desired properties depend crucially on the ability to construct appropriate parsimonious models by the modelling process, and a basic principle in practical ...
متن کامل